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Abstract

Studying the impact of historical factors on ion channel
kinetics is essential for understanding complex phenomena
in cardiac electrophysiology, such as early afterdepolar-
izations (EADs), abnormal depolarizations during the ac-
tion potential plateau associated with life-threatening ar-
rhythmias. Traditional two-variable models without mem-
ory mechanisms struggle to accurately replicate EADs. A
mathematical framework was developed by incorporating
gamma Mittag-Leffler distributed delays and utilizing tools
from Fractional Calculus to extend FitzHugh-Nagumo-
type models. The approach was applied to a FitzHugh-
Nagumo-type model for cardiac cells to generate EADs.
The emergence of these oscillations was studied by ana-
lyzing characteristics of the memory kernels, such as their
mean and variance. The system’s stability was also exam-
ined. The potential utility of memory kernels in investigat-
ing EADs in simplified cardiac models was highlighted.

1. Introduction

Early afterdepolarizations (EADs) are abnormal depo-
larizations that occur during the plateau phase of the car-
diac action potential (AP) and are associated with life-
threatening arrhythmias. Understanding waiting times and
time delays in biological processes, including ion channel
kinetics, is crucial for comprehending complex phenom-
ena like arrhythmias. Studying EADs in simplified cardiac
models is an important research focus, as demonstrated
in a recent study [1], that investigates the emergence and
evolution of EADs in a reduced three-variable Luo-Rudy
model. Two-variable models struggle to replicate EADs
due to their reduced dynamical complexity.

In Section 2, we explore the relationship between equa-
tions of the form:

dw

dt
=

w∞(u)− w

τw(u)
(1)

and memory kernels.
Unlike conventional integer-order operators, fractional

derivatives are nonlocal and can consider the impact of pre-

vious states or events. This makes them suitable for mod-
eling dynamic systems with memory. The current study
explores the generation of EADs by modifying the mem-
ory kernel of the slow variable in two-dimensional models
using tools from Fractional Calculus (FC).

This approach of constructing general fractional models,
discussed in [2,3], is groundbreaking in cardiac modeling.
It is applied to a FitzHugh-Nagumo (FHN) model adapted
for cardiac phenomena, and insights into the emergence
of EADs through the manipulation of memory kernels and
stability observations are provided subsequently.

2. Methods

When analyzing a function y, it can be crucial to con-
sider past states. Delays can be modeled as a Volterra con-
volution between a memory kernel κ and y, expressed as:∫ t

0

κ(s)y(t− s)ds =

∫ t

0

κ(t− s)y(s)ds. (2)

A generalized gamma Mittag–Leffler probability distri-
bution function can be considered as a memory kernel:

κ(t) =

{
Ctβ−1e−atEα,β(−λtα), t ≥ 0

0, elsewhere,
(3)

where C = aβ + aβ−αλ is a normalizing factor, and one
of the hypotheses described in [2] must hold. This distri-
bution function encompasses the exponential, gamma and
Mittag-Leffler distributions as particular cases.

Properties of FC lead to a comprehensive formulation
for the convolution (2) as shown in the equations:∫ t

0

κ(t− s)y(s)ds = Ce−atD1−β(eatw), (4)

dw

dt
= y − λe−atD1−α(eatw)− aw. (5)

2.1. Fractionalization of FHN-type systems

In an FHN-type system of differential equations, the fast
variable u is referred to as the excitation variable, while the
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slow variable w is known as the recovery variable:

du

dt
= f(u,w),

dw

dt
=

w∞(u)− w

τw(u)
. (6)

The special case τw(u) ≡ τ is related to [4]:

w =

∫ t

0

1

τ
exp

(
−1

τ
(t− s)

)
w∞(u(s))ds. (7)

Eq. (1) implicitly relates to a memoryless exponential
delay kernel. We write the convolution with a general de-
lay kernel κ:

w =

∫ t

0

κ(t− s)w∞(u(s))ds. (8)

Particularly, if κ = δτ , the differential system (6) turns
into a delayed differential equation (DDE).

We can generalize this model by using the gamma
Mittag-Leffler PDF (3) as a distributed delay kernel in Eq.
(8), resulting in a general FHN-type fractional model:

du

dt
= f(u,Ce−atD1−β(eatw)), (9)

dw

dt
= w∞(u)− λe−atD1−α(eatw)− aw. (10)

Here, if 0 < α ≤ 1, D1−α is the fractional Riemann-
Liouville derivative. If α > 1, then D1−α = Iα−1, known
as the fractional Riemann-Liouville integral. The new pa-
rameters are α, β, λ and a. The parameter τ is not explic-
itly present in the fractional version, but generally, a and λ
are inversely related to τ . If α = β = 1, a = 1/τ, λ = 0
and w := w/τ , we recover the classical case.

2.2. Fractional adapted FHN model

The traditional FHN system’s solution waveform shows
a hyperpolarization that deviates from the typical myocyte
cardiac action potential, potentially affecting the model’s
recovery properties. This hyperpolarization can be miti-
gated by an adjustment proposed in [5]:

du

dt
= −Gu

(
1− u

uth

)(
1− u

up

)
− η1uw, (11)

dw

dt
= η2

(
u

up
− η3w

)
=

ξu− w

τ
. (12)

Using the gamma Mittag-Leffler PDF (3) as a memory
kernel for the slow variable, we obtain from Eq. (9)-(10)
the generalized fractional FHN model:

du

dt
=−Gu

(
1− u

uth

)(
1− u

up

)
− η1Cue−atD1−β(eatw), (13)

dw

dt
=ξu− λe−atD1−α(eatw)− aw. (14)

3. Results and discussion

In this section, we discuss the emergence of EADs in the
general fractional model (13)-(14), as shown in Figure 1:

Figure 1. Examples of EADs generated with the model
(13)-(14). Frac. 1 and Frac.2 are generated with simple
gamma and Mittag-Leffler memory kernels, respectively.

3.1. The emergence of EADs in terms of
mean and variance

Insights into the emergence of EADs can be gained
when λ = 0 and α = 1, representing a simple gamma
memory kernel. This simplification allows for a focused
study while preserving an important characteristic: by se-
lecting a = µ/σ2 and β = µ2/σ2 for any positive real
values µ and σ2, a kernel with the desired mean µ and
variance σ2 can be constructed.

In Figure 2A, the mean × variance plane is divided into
three regions. From bottom to top, complete APs appear in
the first region, ranging from Dirac delta memory kernels
at the lower limit. The second region exhibits APs with
EADs, and then there is a region of repolarization failure.
Figure 2D depicts APs generated by the kernels in panel
B, corresponding to the black vertical points in Figure 2A,
illustrating changes in AP shape and repolarization diffi-
culty as variance increases. APs in Figure 2E are gener-
ated by the kernels in panel C, corresponding to the black
horizontal points in Figure 2A. Changes in AP shape when
modifying the mean of the kernel are illustrated.

Transitioning from the dotted region without EADs to
the red region with EADs can be achieved by slight ad-
justments to the left (lower mean) or upwards (higher vari-
ance). A leftward shift implies a shorter memory duration,
while an upward shift maintains the mean but increases the
variance, shifting the kernel towards the origin.

Biologically, EADs can arise from reduced repolariza-
tion reserve due to decreased outward current, increased
inward current, or both, affecting the net outward current
necessary for repolarization. In the FHN model, the fast
variable represents transmembrane voltage, while the slow
variable relates to potassium channel activation.

Shifting to the left or upwards in the mean × variance
plane increases the dependence of the potassium current
on recent voltage values, as the mode of the memory ker-
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Figure 2. The blue diamond indicates a standard case.
(A) Regions of normal AP, AP with EADs and repolariza-
tion failure. The black parabola corresponds to the integer
cases. (B) Gamma kernels generated by the black points in
panel A, going through the regions in a vertical slice. (C)
Gamma kernels generated by the black points in panel A,
going through the regions in a horizontal slice. (D) APs
generated by the memory kernels in panel B. (E) APs gen-
erated by the memory kernels of panel C.

nel’s PDF moves closer to the present. These adjustments
lead to a premature decline in the potassium current re-
sponse during repolarization, making the membrane more
susceptible to reactivation by inward currents. It increases
the likelihood of EADs and potential repolarization failure.
An interesting observation is that during the initial stages
of repolarization, the opposite effect occurs, as the potas-
sium current reacts more promptly to voltage increases.
Consequently, initial repolarization is accelerated when the
mean of the slow variable is smaller or the variance is
greater. This phenomenon is clearly illustrated in Figure
3. Panel B shows that the model from [1] has the same
initial repolarization behavior.

Although the initial behavior is similar, it is important to
note that the EAD mechanism differs. In the model by [1],
EADs arise when the time constant of potassium gating is
longer, despite the initial repolarization being slower. This
second mechanism can also be explored in our model, as
shown in the example Frac.2 of Figure 1, by incorporating
memory kernels other than simple gamma kernels. De-
veloping a general description of the emergence of EADs
is challenging due to the diverse nature of general ker-
nels, since not all of them can be accurately represented
by a gamma kernel. For details on general gamma Mittag-

A B

Figure 3. Initial repolarization is faster when the mean of
the potassium-related variable is smaller. Panel A shows
the presented model with a gamma memory kernel of fixed
variance and mean µ, while panel B illustrates the same
initial behavior of the model from [1], where τx is the time
constant for potassium gating.

Leffler memory kernels, which can offer valuable insights
into the influence of ion-channel shape memory on various
types of EADs, refer to [6] and [2].

3.2. Stability analysis

From a stability analysis perspective, the transition from
repolarization failure to a complete action potential is due
to a change in stability. The use of fractional deriva-
tives, which are non-autonomous, allows trajectories to
self-intersect, enabling the generation of mixed-mode os-
cillations. Recent research (e.g., [7,8]) suggests that oscil-
latory states emerge in fractional models near Hopf-like bi-
furcation points when a bifurcation parameter approaches
a critical value. Replacing the Caputo fractional derivative
in an integer model simplifies stability analysis, but in the
constructive fractional system, it is challenging. Neverthe-
less, our findings indicate that EADs in the fractional gen-
eralized model result from an unstable focus or unstable
limit cycles observed in the corresponding integer model.

The fractional system (13)-(14) exhibits the same equi-
librium point as the corresponding integer system (11)-
(12). In the integer model, a subcritical Hopf bifurca-
tion occurs at a critical value τ∗ (see Figure 4A). When
τ slightly exceeds τ∗, the equilibrium point becomes an
unstable spiral.

An unstable limit cycle emerges when τ is slightly less
than τ∗, leading to the observation of EADs in the frac-
tional model. For gamma memory kernels, setting a =
1/τ establishes a relationship between the mean and vari-
ance as µ/σ2 = 1/τ . EADs occur when µ/σ2 ≈ 1/τ∗ and
µ2/σ2 ≈ µ/τ∗ < 1. Figure 4B shows a scenario with an
unstable limit cycle in the integer model, where the equi-
librium point is a stable spiral. The orange integer solution
diverges from the green unstable limit cycle, while the blue
integer solution follows a typical action potential shape.
The fractional solution enters the spiral but can escape due
to the trajectory’s self-intersection capability.
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Figure 4. The nullclines of the integer-order model are de-
picted in black, and the red dot represents an equilibrium.
Panel A presents phase portraits of solutions of the classic
model (11)-(12) with τ < τ∗ and τ > τ∗. In Panel B, so-
lutions of the classic model for τ slightly smaller than τ∗

and different initial points are plotted, showing an unsta-
ble limit cycle. The orange dot indicates the initial point of
the orange trajectory, which spirals inwards. A fractional
purple solution entering and exiting the spiral is presented.

4. Conclusions

The emergence of EADs was investigated by modify-
ing the memory kernel of the slow variable in simple two-
variable models using tools from FC. Recent studies such
as [2, 3, 9] have advanced constructive methods for frac-
tional modeling, highlighting the role of fractional func-
tions in waiting times and delay kernels. In this work,
we developed a mathematical protocol to extend FHN-type
equations with gamma Mittag-Leffler distributed delays to
induce mixed-mode oscillations as EADs. Paper [6] also
applied this method to Mitchell-Schaffer and Karma mod-
els, after adapting them to a proper geometry.

To analyze the relationship between the memory kernel
and EADs, we studied changes in the mean and variance of
the particular case of gamma kernels. Our findings indicate
that transitioning from a state without EADs to one with
EADs can be achieved by a slight decrease in the mean or
a slight increase in the variance. These adjustments lead to
a faster decrease in the potassium current response during
repolarization, increasing the possibility of EADs. While
these findings may not apply to all types of gamma Mittag-
Leffler memory kernels, they provide a valuable starting
point for future research.

We also observed that EADs occur when the fractional
trajectory approaches an unstable spiral equilibrium or
limit cycle of the integer-order system. The fractional tra-
jectory can enter the spiral but has the ability to escape
intersecting itself, due to the non-autonomous nature of
fractional generalizations. The significance of spiral points
in the formation of EADs aligns with previous findings,
such as [10], who demonstrated in a Luo-Rudy cardiac
model that EADs arise when the non-resting steady state
of the voltage/Ca current subsystem loses stability through
a Hopf bifurcation, leading to oscillations. Future work

should focus on explicitly linking fractional parameters to
experimental biomarkers to enhance the translational im-
pact of this approach.
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